Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells
نویسندگان
چکیده
The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K(+) and Ca(2+), were also determined. Growth experiments have shown that in the absence of K(+) in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca(2+), respectively, while in the presence of 1 mM K(+) they were inhibited only by 1 mM Ca(2+). At 10 mM K(+), endogenous growth and growth induced by either IAA or FC did not depend on Ca(2+) concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca(2+) channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K(+), independently of Ca(2+). However, lack of Ca(2+) in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K(+) uptake channels in regulation of plant cell growth.
منابع مشابه
Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells.
Microelectrodes were used to measure simultaneously the effects of indole-3-acetic acid (IAA) on membrane potential and cytosolic pH of corn coleoptile cells. IAA caused an initial depolarization followed by hyperpolarization, the latter displaying rhythmic oscillations. The extent of the changes in membrane potential was dependent on IAA concentration, and hyperpolarization, but not depolariza...
متن کاملFusicoccin Counteracts the Toxic Effect of Cadmium on the Growth of Maize Coleoptile Segments
The effects of cadmium (Cd; 0.1-1000 μM) and fusicoccin (FC) on growth, Cd(2+) content, and membrane potential (E(m)) in maize coleoptile segments were studied. In addition, the E(m) changes and accumulation of Cd and calcium (Ca) in coleoptile segments treated with Cd(2+) combined with 1 μM FC or 30 mM tetraethylammonium (TEA) chloride (K(+)-channel blocker) were also determined. In this study...
متن کاملDetermination of Auxin-Dependent pH Changes in Coleoptile Cell Walls by a Null-Point Method.
The present debate on the validity of the "acid-growth theory" of auxin (indole-3-acetic acid, IAA) action concentrates on the question of whether IAA-induced proton excretion into the cell wall is quantitatively sufficient to provide the shift in pH that is required to explain IAA-induced growth (see D.L. Rayle, R.E. Cleland [1992] Plant Physiol 99:1271-1274 for a recent apologetic review of t...
متن کاملRapid Hormone-induced Hyperpolarization of the Oat Coleoptile Transmembrane Potential.
The effects of the plant growth substances indoleacetic acid (IAA) and fusicoccin on the transmembrane potential of Avena coleoptile cells (at 27-29 C) were studied. Fusicoccin caused hyperpolarization of the membrane potential which started after a lag of less than 20 seconds, and which on average reached -49 mv at an external K(+) concentration of 1 mm and -75 mv at 0.1 mm K(+). IAA caused a ...
متن کاملThe role of phenolic compounds in growth improvement of cultured tobacco cells after exposure to 2-D clinorotation
Previous studies have confirmed that the growth and development of plants are entirely dependent on the gravitational acceleration of the Earth. So far, most of the studies on the plant response to the Earth gravity have focused on the geotropism of root tip of higher plants<span lang="AR-SA" dir="RTL...
متن کامل